
City Predictor: Leveraging Machine
Learning for Urban Insights

Colton Blackwell

1

1. Problem Statement

A company aims to build a new development and needs to identify the most suitable city that
meets specific criteria such as high population, low elevation, and other relevant parameters.
The objective of this project is to develop and utilize a machine-learning predictive model
that can analyze various city attributes and recommend the best city globally for the
company’s project based on the provided criteria.

1.1 Quick Use Case Overview

The company defines/adjusts the desired parameters (e.g., population, elevation, location
features) and inputs these features into the model. The machine-learning model predicts the
geographic coordinates (latitude and longitude) that best match the specified criteria.
Subsequently, the model displays a 3D figure of Earth, plotting the predicted point and
identifying the nearest city that best fits the company's development needs. The figure also
shows the distance (in km) between the predicted point and the identified best-fit city.

2. Data Preprocessing

The dataset used for this CMPT 353 project was chosen from the following source:
Geonames dataset. This dataset was gathered using a simple .read_csv() function.

The pre-processing tasks included eliminating rows where the features exceeded the
maximum allowable values, transforming the 'Coordinates' attributes into separate 'latitude'
and 'longitude' columns to facilitate easier model predictions, and ensuring all numerical
values were indeed numeric. Unnecessary features, such as administrative codes and
modification dates, were removed, and rows with missing coordinate values were excluded.
Empty population and elevation values were filled with -1, and rows with nonsensical
longitude and latitude values (e.g., latitude > 90, longitude > 180) were removed.

Outliers were identified using methods such as graphing and human perception, Z-score,
IQR, and box plots. After completing the pre-processing stage, the dataset was saved into
processed_cities_dataset.csv, which was then used to train and evaluate the machine learning
model.

3. Classification Model

A Random Forest regressor model is a powerful tool in machine learning, particularly useful
for predictive tasks where the relationship between input features and output targets is
complex or nonlinear. It leverages the ensemble learning technique by constructing multiple
decision trees during training and outputs the average prediction of those trees for regression
tasks. This model excels in handling large datasets with high-dimensional features and is
robust against overfitting, a common issue in single decision tree models. By averaging

https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/table/?disjunctive.cou_name_en&sort=name
https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/table/?disjunctive.cou_name_en&sort=name

2

predictions from multiple trees, Random Forests reduce variance and improve generalization,
making them effective in scenarios with noisy data or where feature importance is unclear.
Additionally, they are relatively insensitive to outliers, offering flexibility in data types and
distributions.

The processed dataset was split into 80% for training and 20% for testing. Since the Random
Forest Regressor model cannot handle non-numerical data, categorical features were
transformed into numerical codes using the `Categorical.codes()` method. As detailed in
section 3.1 below, the chosen parameters were employed for model evaluation in section 3.2.

3.1 Hyperparameter Tuning

Using RandomizedSearchCV() on our Random Forest Regression model, it was
determined that the following are approximately the best parameters:

Hyperparameters Latitude Longitude

max_depth 20 None

max_features None ‘log2’

min_samples_leaf 1 1

min_samples_split 10 2

n_estimators 86 159

3.2 Measuring Model Performance

The model performance for predicting latitude and longitude is excellent. High R2 and
Explained Variance Scores indicate that both models fit the data well, while low
Median Absolute Errors show that predictions are accurate. Overall, these results
suggest that the models are highly reliable, with the longitude model performing
slightly better.

Latitude Longitude

R2 Score 0.9859 0.9964

Median Absolute Error
(MAE)

1.3965 1.6894

Explained Variance Score 0.9890 0.9965

Median Absolute Error 0.7652 1.0253

3

4. Results/Findings/Conclusions

Based on our analysis in section 3.2, we can confidently conclude that the
RandomForestRegressor model is a reliable choice for this dataset. The model demonstrated
excellent performance in predicting city locations, attributed to its high accuracy, robustness
to overfitting, and versatility. Notably, the model's accuracy improved with additional training
data, as evidenced by the reduced distance between predicted and actual coordinates.

Utilizing hyperparameter tuning methods like RandomSearchCV() helped mitigate
overfitting, a common issue with tree-based models. The ensemble effect of the random
forest also contributed significantly. While individual decision trees exhibit low bias but high
variance, the Random Forest reduces variance through bagging and the ensemble effect
without significantly increasing bias, resulting in a more balanced model that generalizes
better to unseen data.

In conclusion, we identified a problem that required a solution, prepared our data
meticulously for valid model training, and optimized our datasets. We then constructed and
fine-tuned our regression model using advanced techniques like hyperparameter tuning. Our
well-tuned model successfully predicted outcomes on the test dataset, demonstrating the
effectiveness of our approach in creating a robust regression solution.

5. Lessons Learned and Future Work

Spending time on data cleaning and preprocessing is crucial as it ensures the model isn't
learning from noisy or incorrect data. Handling missing values, outliers, and encoding
categorical variables correctly helps in building a more robust and accurate model. Handling
outliers can be improved further by exploring advanced outlier detection algorithms such as
Isolation Forest to identify and handle outliers more effectively.

We encountered several challenges, including accurately identifying features that were
unnecessary for predicting coordinates. Other issues included incorrect data formatting,
missing values, and managing the bias-variance tradeoff to prevent overfitting and
underfitting.

If we had more time, we could have implemented additional improvements, such as
conducting more extensive hyperparameter tuning using techniques like GridSearchCV to
find the optimal parameters for our model. Additionally, we could have utilized advanced
feature selection methods, such as recursive feature elimination, to identify and remove
irrelevant features more effectively.

4

6. Gallery/Demo
**Please View Video Demo (1m:18s)!
Link: https://www.youtube.com/watch?v=SAnjm8y8Jd0

Fig. 1 (top right): 3D Globe with Actual
Vs. Predicted Cities where n_cities = 500.

Fig. 2- 4 (Left): 3D Globe with Actual
Vs. Predicted Cities where n_cities = 1.
Each image moving down the page is

Zooming outward. This use case resembles
How a company would use this program

To locate the best city based on their specified
Parameter values (Ex. Population = 50k,

Elevation = 300, etc.)

https://www.youtube.com/watch?v=SAnjm8y8Jd0

5

Project Experience Summary
Accomplish Statements
Colton Blackwell

- Pre-processed the .csv dataframe for efficient model training and
evaluation. This included identifying and eliminating unnecessary
features (using the .drop() command) and transforming categorical
attributes into codes. This transformation was accomplished using the
Categorical.codes() method, as the machine-learning model requires
numerical values as inputs. After completing additional pre-processing
steps (handling missing values and outliers), the resulting dataset was
efficient and ideal for a regression prediction task.

- Discovered ideal hyperparameters for the machine-learning model using
the RandomizedSearchCV() hyperparameter-tuning method. This
involved defining a range of valid parameter values and fitting the model
40 times to find the best combination of values. The best resulting values
are shown in Section 3.1. This task was necessary to balance overfitting
and underfitting by adjusting parameters such as max_depth and
min_samples_split for the best fit.

- Utilized the Random Forest Regressor model to predict coordinates based
on parameters such as population, elevation, and location features.
Cross-validation was used to split the processed dataset into training and
validation sets. The model was then trained using the .fit() method and
used to predict locations with the .predict() method. Understanding the
context helped identify that this regression model would likely perform
better compared to others.

- Evaluated model performance using metrics such as
mean_absolute_error() and r2_score() to justify the use of the
RandomForestRegressor ML model. Achieved impressive results, as
shown in Section 3.2, proving that the RandomForestRegressor with the
hyperparameter values obtained in Section 3.1 is a valid model for this
task.

6

- Identified outliers in the dataset that could disrupt model predictions. This
involved using Z-score functions and box-plot visuals to identify such
points, and then removing any points that did not make sense. Observable
outliers were eliminated if they did not fit the context.

- Visualized predicted vs. actual points on a 3D globe. This allowed us to
observe the accuracy of our model. This step also offered a fun and
interactive method to measure the success of our project.

