
Project, Phase 3: Testing
Colton Blackwell, Jonathan Bryan, Ridham Sharma, Sophia Don Tranho​

*Jacoco was used for evaluating the branch/condition coverage of the tests.
*Jacoco coverage images are a result of the class in isolation and not the sum of all test cases in
every ‘…Test’.java file

AppTest.java
Info:

- System tests:
- First test needed as they ensure Game class and Main run properly.
- testAppBuild()

- Try/Catch on main to check if it gets initialised correctly
- testGameStates()

- Testing game state based on .keyPressed() user input
- General test to ensure the app builds correctly
- Test to ensure all basic game states are loading/running correctly

*(Jacoco) AppTest coverage

BoardTest.java
- Unit Tests/Functional testing:

- AssertFishLoaded()
- To ensure there are regular rewards (orange koi fish) spawned in the

maze
- AssertObjectRemoval()

- To ensure that the object is properly removed and that there is a blank
cell in its place



- AssertFishRemoval()
- Testing feature which removes the fish from the board and updates

the fish count.
- AssertCellLoadedl()

- Testing when user encounters regular reward, point goes up by one
- AssertOpenEnd()

- Testing feature of opening end block when user is allowed to pass to
next level.

(Jacoco) BoardTest coverage

CollisionHandlerTest.java
- Unit Test:

- testCollisionAllDirection()
- Tests the collision handling for all four movement directions (up, down,

right, left)
- assertEquals(game.p1.y, y)

- Checks if the entity’s y position remains unchanged after
attempting to move in the up and down directions

- assertEquals(game.p1.x, x)
- Checks if the entity’s x position remains unchanged after

attempting to move in the right and left directions



(JaCoco) CollisionHandlerTest coverage

KeyHandlerTest.java
- Functional unit testing

- testPlayerInput()
- Test case for WASD keys and player’s reaction to that movement (Ex.

up, down, etc.)
- testKeyRelease()

- Testing whether input in game.keyHandle.keyReleased(input)
accidentally triggers the position of the user.

(JaCoco) KeyHandlerTest coverage

PlayerTest.java
- Functional Testing

- AssertPlayerDirection() => Tests if the player’s direction is being updated
correctly based on user input



- AssertRewardCollection() =>Tests cell 3 as regular reward in .collectReward()
- AssertPenaltyCollection() => Tests cell 4 as penalty in .collectPenalty()
- AssertReset() => Check whether time is set back to 0 when game is reset

- Structural Testing
- AssertHide() => Checks if the player.hideState works and user is in a

hideable cell
- AssertSpriteChange() => Goes through a sequence of sprite counter values

and checks whether the player’s spriteNum updates as expected

(JaCoco) PlayerTest coverage

RaccoonTest.java
- AssertRaccoonLocation()

- Testing .setLocation() and asserting whether the position is equal to the
cellSize*x/y position.

- AssertRacconDirection()
- Checks behaviour of the racoon entity by undergoing different direction

changes and asserts if the racoon’s final position is different from its initial
position

- AssertRaccoonSearchPath()
- Testing the path finding algorithm of the raccoon and checking that the

raccoon’s movements are based on the map environment.



(JaCoco) RacoonTest coverage

Findings
After doing some playtesting of the game, we noticed that the player’s hitbox felt wider than
it should have been. You would often die to the raccoon after getting stuck on the corner of a
block in tight sections of the maps. This was a simple fix, since all we had to do is make the
size of the player hitbox a bit thinner.

The other issue that came up was after beating the second level. Upon reaching the exit, the
game would freeze instead of displaying the “You Win” screen and giving the option to move
to level 3. I suspected that it was due to the end of level two being on the top of the screen,
so I dug into the code to find the bug. The bug ended up being caused by an
IndexOutOfBounds exception, when the player was trying to move to a tile that did not exist.
To fix this, I changed which edge of the player’s sprite was being used to detect where it
was.
Before:

After:

This simple change fixed the bug and allowed for us to have an exit on any side of the map.


