MACM 316 - Computing Assignment 3 Report

Colton Blackwell
301451278

Purpose

P This report aims to investigate and compare two numerical methods, namely MATLAB's fzero® and the secant method, to
analyze and compute the zero contour of a 2D function HI(x,y). The paper begins by outlining the concept of 2D contours and their
transformation into a series of 1D root-finding problems. Following this, the report conducts experiments with various h and é values to
optimize the contour tracing process. Results encompass findings from reproducing a designated figure using the secant method,
determining the number of steps required for different parameter combinations, observing convergence failures, and providing potential
explanations for these anomalies. The efficiency and robustness of both methods are then evaluated using time measurements and
convergence analysis.

The importance of this report lies in its implications for numerical analysis and computational mathematics. Root finding is a

fundamental problem in various scientific and engineering applications. Understanding the performance of different root-finding
methods, such as the secant method and MATLAB's fzero, can lead to more accurate and reliable solutions in practical scenarios.

Observations

Attempting to recreate the target image using the secant method with h=0.6 and d=n/2 produces Figure 1, where a line with
points diverges from the contour line to negative infinity. Reducing h to 0.1 and setting 8=n/4 uncovers a gradual appearance of more
lines, which slowly start to outline the contour (Fig. 2).

When combining these parameters (h = 0.1, delta = pi/4, niter = 145), the algorithm can effectively trace the contour curve by
taking small steps (h = 0.1) with a suitable interval size (delta = pi/2) and sufficient iterations (niter = 145) to cover the contour without
missing parts or overshooting (Fig. 2). This combination strikes a balance between accuracy, convergence, and computational efficiency,
allowing the algorithm to trace all the way around the curve successfully.

Analyzing the computations from both implementations reveals intriguing findings. By utilizing the tic and toc syntax, we can
note that the time taken for fzero to trace the bounds was 0.008882 seconds, noticeably slower compared to the secant method's 0.005940
seconds.

Understanding

When the step size h is smaller, such as h = 0.1, the algorithm takes smaller steps along the contour, leading to a more accurate
tracing of the contour line HI(x,y) = 0. This finer granularity in step size allows the algorithm to capture the intricate details of the
contour, resulting in a successful tracing of the contour line. On the other hand, when this increased to a larger value like h= 0.6 or
greater, the algorithm takes larger steps along the contour. This larger step size can cause the algorithm to overshoot or miss crucial
points, leading to an inability to trace the line accurately. The relationship between the step size hand the ability to trace the contour line
effectively can be understood in terms of the trade-off between accuracy and computational efficiency. Smaller step sizes improve
accuracy but may require more computational iterations to trace the contour fully. Conversely, larger step sizes may improve
computational efficiency but can compromise the accuracy of the traced contour.

A notable difference between the secant method and fzero is their convergence behavior. The secant method typically exhibits a
gradual improvement in accuracy with each iteration. On the other hand, fzero may not always show a similar improvement in accuracy
with increasing iterations, which can sometimes lead to disappointing results, especially for complex functions or poorly chosen initial
guesses

Convergence errors can occur if the initial guesses 6, and 0, are poorly chosen, leading to divergence, particularly if HI(x, y) has
steep gradients or is not well-behaved near the guesses. Additionally, with larger step sizes, the method may overshoot the root, missing
contour points and requiring corrections in subsequent iterations. To mitigate these errors, we should dynamically adjust h and & based on
the function's behavior to balance accuracy and computational efficiency. In the future, preprocessing HI(X, y) to smooth out
discontinuities or rapid changes could further enhance the method’s stabiliy.

trace the contour hi(x,y)=0

Trace the contour hi(x,y)=0

y-axis
=
y-axis

| CA3 dermo.m ?ﬁl E

:_ |_|EJ Ec;ﬁ_demu.n -- djm -- Jjsm edit - l o | T]
2 _1% function [root, niter, xlist] = secant{ func, xint, tol)
a % Define the domain in x and v g - : SECANT: Secant method for solving a nonlinear equation.
: :oc i '2'555'92552'5-3 4 % sample usage:|
= ¥y = -2.518.825:2.5] 5 * [root, niter, x1ist] = secant{ func, xint, tol)}
B %
g % pefine a 'r-.'eshj to plot on 7 % Input:
2 [¥g,¥g] = meshgrid(x:oyy); g ;o func - function to be solved
18 o o a z xint - interval [xleft,xright] bracketing the root
11 % set root-finding tolerance (for initial pt & loop 1e 4 tol - convergence tolerance (OPTIONAL, defaults to le-g)
12 tol = le-g; 11 kA
13 fzerc_opt = optimset('Tolx’,tol); 12 % output:
14 13 i root - final estimate of the root
15 % Root-finding loop comtrol paraweters 14 A niter - number of iteratlcns required to converge
16 15 - x1list - list of iterates, an array of length ‘niter’
17 h = 8.5; 1s
18 delta =in.-"2,' 17 % First, do some checking on the input parameters:
19 18 if nargin < 2
ag % Define the function HI(x,y) 19 -Fpr‘intrglgls '5|.;t_:¢.'t: mus't.‘b_e EE}].I.EG '.-;'ith_at le?s*f two aTgumenEs- }’.. ,
a1 hi = @06 y) exp(-3%((x + B.51.72 + 2%y.%2}} + exp(-: 3? Ensr‘r‘or(Usage: [root, niter, xlist] = secant{ func, xint, [tol] }" J;
22
i z = o = 22 if length{xint) ~= 2, error{ 'Parameter ''xint"" must be & vector of length{ 2." }, end
ii ﬁ_D::mth: Func_t:tc;_HI o ;:'e ui;ie,(rad;zs-_;zé 23 if nargin < 3; tol = 1e-6; end ¥ default value for "tol!
T_Hh =@ yn) AL+ BECOS(thy syn +hEsTng 244 % fcnchk(...) allows a string function to be sent as @ parameter, and
25 2 5 o _ 25 ¥ coverts it to the correct type to allow evalustion by feval{).
26 % X Find point on the "H" with y=0 a5 func = fonchik(func);
27 % Initial guess for a point very MEAR contour 27
28 xi= -1.97; vi = 8; 23 a = xint{1}; b = xint(2};
29 29 c=bh;
28 I_IT_I_ % START: FIND INITIAL POINT on contour (using fzero g % Always start with f(a) » f(b)
31 % Root-find angle to point ON centour 31 fa = feval{ func, a };
32 th = a8; 32 b = feval{ func, b };
33 th = fzero{@{th) hi_th{th,xi,yi},th,fzero_opt); 33 if(fa < fb)
34 % END: FIND INITIAL POINT on contour 34 ta =@8; a=Db; b=ta; ¥swapaandb
35 35 tfa = fa; fa = tb; b = tfa; % swap f(a) and f(b}
ES % Compute first point ON contour 36 end
37 un = xi + h¥cos(th); 37 "
28 yn = yi + h¥sin{th); :g Mtz B
20 niter = @;
5 a8
M) in
ﬁ :tmke fr;:’_'] ;-FICGn‘tDur‘ EE i b i oof : 41% while{ abs{a-b) > tol) % absolute error tolerance
a5 _'3 Eps _t L 1ncr£a;et E+2u2 n;!r A e O I % Compute the peint where the secant line jeoining
fEr Contour = serns(NSLARE L, 200 43 % a and b intersects the x-axis
43 zero_contour{l,:} = [xn yn]; aa ¢ =b-fb* (a-b) / (fa-Fh);
44 45 fc = feval{ func, c };
45 % Loop for the contour a6 xlist = [xlist; ¢]; % accumulate list of x-values
45 tic; a7 a="b; fa=fh;
47 [for kk = 1:msteps ag b=c; fb=fc;
48 % START: theta root-finding here (using secant 149 niter = niter + 1;
43 xint = [th - delta, th + delta]; 58 | end
e [thn, niter, x1list] = secant(@(th) hi_th({th,xn,: 51
51 % END: theta root-finding here 52 4 root =.c;
52 53 EEND secant.
53 % compute next point con contour N
54 *n = xn + h*cos{thn);
55 yn = ¥n + h*sin{thn);
5 N e 57 % update new points & angle
58 zero_contour(kk+l,: 3 = [xn ynl;
5o th = thn;
B8 end
&1 toc;
62
B3 & Colour contour plot of HI fumction
B4 figure(z);
65 clf;
&6 peoler(xyy,ni(xg, yg));
&7 colorbar;
63 shading interp;
B3 hold on;
e contour{(xx,yy,hi(xg,yg),[@ @], 'w--");
71 axis equal;
72 axis image;
73
74 title('Trace the contour hifx;y)=8"'):
75 xlabel{ "x-axis*);
76 ylabel{ 'v-axis");
77
78 % Plot the zero-contour, 1st & last point
79 plot{zero contour(:,1),zerc comtourd:,2}, 'ro-"};
28 plot{zero_contour(l,1),Zero_comtour{l,2}, "ko'};
&1 plot{zero contour({end,l),zero_contour{end,2), 'k=");

g

