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Purpose

This report aims to investigate and compare two numerical methods, namely MATLAB's `fzero` and the secant method, to 
analyze and compute the zero contour of a 2D function HI(x,y). The paper begins by outlining the concept of 2D contours and their 
transformation into a series of 1D root-finding problems. Following this, the report conducts experiments with various h and δ values to 
optimize the contour tracing process. Results encompass findings from reproducing a designated figure using the secant method, 
determining the number of steps required for different parameter combinations, observing convergence failures, and providing potential 
explanations for these anomalies. The efficiency and robustness of both methods are then evaluated using time measurements and 
convergence analysis.

The importance of this report lies in its implications for numerical analysis and computational mathematics. Root finding is a 
fundamental problem in various scientific and engineering applications. Understanding the performance of different root-finding 
methods, such as the secant method and MATLAB's fzero, can lead to more accurate and reliable solutions in practical scenarios.

Observations
Attempting to recreate the target image using the secant method with h=0.6 and δ=π/2 produces Figure 1, where a line with 

points diverges from the contour line to negative infinity. Reducing h to 0.1 and setting δ=π/4 uncovers a gradual appearance of more 
lines, which slowly start to outline the contour (Fig. 2).

When combining these parameters (h = 0.1, delta = pi/4, niter = 145), the algorithm can effectively trace the contour curve by 
taking small steps (h = 0.1) with a suitable interval size (delta = pi/2) and sufficient iterations (niter = 145) to cover the contour without 
missing parts or overshooting (Fig. 2). This combination strikes a balance between accuracy, convergence, and computational efficiency, 
allowing the algorithm to trace all the way around the curve successfully.

Analyzing the computations from both implementations reveals intriguing findings. By utilizing the tic and toc syntax, we can 
note that the time taken for fzero to trace the bounds was 0.008882 seconds, noticeably slower compared to the secant method's 0.005940 
seconds. 

Understanding
When the step size h is smaller, such as h = 0.1, the algorithm takes smaller steps along the contour, leading to a more accurate 

tracing of the contour line HI(x,y) = 0. This finer granularity in step size allows the algorithm to capture the intricate details of the 
contour, resulting in a successful tracing of the contour line. On the other hand, when this increased to a larger value like h= 0.6 or 
greater, the algorithm takes larger steps along the contour. This larger step size can cause the algorithm to overshoot or miss crucial 
points, leading to an inability to trace the line accurately. The relationship between the step size hand the ability to trace the contour line 
effectively can be understood in terms of the trade-off between accuracy and computational efficiency. Smaller step sizes improve 
accuracy but may require more computational iterations to trace the contour fully. Conversely, larger step sizes may improve 
computational efficiency but can compromise the accuracy of the traced contour.

A notable difference between the secant method and fzero is their convergence behavior. The secant method typically exhibits a 
gradual improvement in accuracy with each iteration. On the other hand, fzero may not always show a similar improvement in accuracy 
with increasing iterations, which can sometimes lead to disappointing results, especially for complex functions or poorly chosen initial 
guesses

Convergence errors can occur if the initial guesses 𝜃0 and 𝜃n are poorly chosen, leading to divergence, particularly if HI(x, y) has 
steep gradients or is not well-behaved near the guesses. Additionally, with larger step sizes, the method may overshoot the root, missing 
contour points and requiring corrections in subsequent iterations. To mitigate these errors, we should dynamically adjust h and 𝞭 based on 
the function's behavior to balance accuracy and computational efficiency. In the future, preprocessing  HI(x, y) to smooth out 
discontinuities or rapid changes could further enhance the method’s stabiliy.




