Analyzing Equilibrium Points in Population Models Using Newton's

Method and Fixed-Point Iteration

Colton Blackwell

** Assume G(N) = r(1-N)-N; G’(N) = r-2rN-1
Purpose

This report explores and compares different numerical methods, specifically Newton's method and fixed-point iteration, to
analyze equilibrium points in discrete dynamical systems. Focusing on a population growth model described by the equation N,;, =
rN((1-N)), the study identifies equilibrium points and determines their realistic ranges for various values of r. Newton's method is
employed to find the largest realistic root for r € [0.1,4], with the functions G(N) and G'(N) defined as ¥N(1-N)—N and r—2rN—1,
respectively. The numerical results are then graphically compared with the analytical solution. Additionally, the fixed-point method is
applied for selected r values (r=0.5,r=1.5,r=2, and some r € [3,3.4]), observing different convergence and divergence patterns. These
patterns are illustrated graphically and explained in terms of population dynamics and the concept of chaos in discrete dynamical systems.

By analyzing equilibrium points and stability in population models, it aids in predicting and managing wildlife populations and
disease spread. The numerical methods studied, Newton's method and fixed-point iteration, have broad applications in various fields.
Understanding convergence, divergence, and chaos helps design robust models and strategies to handle real-world unpredictability.
Additionally, the experiment highlights how rounding errors in finite-precision arithmetic can cause algorithm instability, underscoring
the need to design better algorithms to mitigate such issues.

Observations

To find the equilibrium points for the given population growth equation, the equation N*=F(N*) needed to be set up and solved.
First, the equation N*=rN*(1-N*) was rearranged and simplified to N*(»N*—r+1)=0. This equation gave two solutions: N*=0 and
rN*—r+1=0. Solving the second equation for N* resulted in N*=(r—1)/r. This meant that the equilibrium points were N*=0 and
N*=(r—1)/r. For these equilibrium points to have realistic meaning in the context of population growth, N*=0 represented the extinction
of the species and was a realistic equilibrium point for any value of r. Additionally, N*=(r—1)/r was required to be between 0 and 1 since
population sizes are typically normalized to fall within this range. For the lower bound, (»—1)/7>0 implied >1; therefore, N*=(r—1)/r was
a realistic equilibrium point for 7>1.

To find the largest root for r&[0.1,4], the functions G and G' (**See function definitions above) were prepared for use with
Newton's method. The initial guess was set to 0.5, this being the midpoint of the normalized population size range [0, 1]. Observing the
results shown in Fig. 1, Newton's method successfully found the correct root, as it matches the analytical solution N*=(r—1)/r.

Using the fixed point method while observing the behavior of the function g(x)=rx(1—x) for different values of r reveals
interesting dynamics. When r = 0.5, the function converges quickly to a stable fixed point at x = 0, benefiting from the condition r <1 that
ensures stability. Increasing r to 1.5 still results in convergence, albeit with the fixed point shifting to a non-zero value; however, this
convergence may be slower due to the derivative g'(x) being closer to 1. At r=2, the function converges to a fixed point between 0 and 1,
showcasing varying rates of convergence while maintaining stability. As r enters the range [3,3.4], the function's behavior becomes more
complex, potentially exhibiting periodic behavior or chaos. For instance, at r=3.2, periodic oscillations can occur, highlighting the
non-linear dynamics and unpredictability that can arise in this range of r values.

Understanding

To understand the equivalence shown in Fig. 1 and the relationship between the two functions, it is important to note that
Newton's method seeks the roots of the equation G(N)=0, which correspond to the equilibrium points of the system. The function G(N)
used in Newton's method for solving the equation #N(1-N,)-N=0 simplifies to G(N)=rN—+N>-N. Comparing this with the analytical
solution N=(r—1)/r, we substitute N, with N to get N=(r—1)/r. Substituting this into G(N), we find that G((r—1)/r) simplifies to zero,
confirming that G(N) in Newton's method is equivalent to the analytical solution at the equilibrium points of the population growth
system.

r=0.5 r=15 r=2
0.6 05 fF 2
i [
s - : - - 04| ! !
Larl:a;est Realistic Root using Newton's Method and Analytical Solution & | %04 p
0. | X __L £
et z - 02 s]
5 Newton's Method o -‘Ei!’qgj_&mgunj.
= = = = Analytical Solution o M B i 3
= R £ .
o 08 0 10 20 0 10 20 1 15 2
o Iteration teration lteration
= 5.7 r=3 =32 r=3.4
= 0. 07 ;
m
o 07
n 085
n 02 S5
= 0.6}
L] i
— 0.55
0
0 0.5 1 15) 25 3 35 4 no s Jom : el UL
Iteration teration lteration

Fig. 1 Fig. 2

= - - newton.m newten_population_growth.m fivedpt.m | fixedpt testm 3 | +.
[# Editor - C:\Users\colto\Downloads\newton_population_growth.m \
= . - e = —1 ! # Define the function for fixed point iteration
: | newton.m | newton_population_growth.m % | fixedptm 0 | fixedpt testm 2 Fiwedpt function = @(r, x) r * x * (1 - x);
1] function newton_population_growth() 3
2 % Define the range of r 4 % Parameters
3 r_values = 8.1:0.1:4; 5 xguess = B.5;
4 6 tol = le-6;
5 % Store the largest realistic root for each r 73 maxiter = 1000;
6 largest_root = zeros(size{r_wvalues)); 8
7 5y % Test different values of r
8 % Iterate over each r 1@ r_values = [@.5, 1.5, 2, 3, 3.2, 3.4];
ol for idx = 1:length{r_values} 11
16 r = r_values(idx); 12 % Create a figure to hold all the plots
11 13 figure;
2) % Define G(N) and G'(N) for current r 14 hold onj;
13 G=@(N) r*N*(1-N)-N; 22
14 G prime = @(N) r - 2 * 0 * N - 1; 16 ¥ Iterate over each r wvalue
15 - 17 = for i = 1:length(r_values)
16 % Initial guess 1o Epmhinallies b
17 NE = B.5: 19 gfunc = @(x) fixedpt_ function(r, x);
=35
18 28 [xfinal, niter, xlist] = fixedpt(gfunc, xguess, tol, maxiter);
19 % Ensure the initial guess avoids problematic points =i A
29 [root, ~, ~] = safe_newton{G, G_prime, N@); 22 sibplot(2, 3, 3);
21 23 plot(l:niter+l, xlist, "-o0');
; . 24 titl ‘r=" 2zt 113
22 % Update largest root if the current root is larger z E(I, 5 'nu:rl SEE(r)1E
= : 25 xlabel('Iteration');
33 largest_root({idx) = max(largest_root(idx), root); o
o 5 26 ylabel{'x");
24 - end 5
- 27 grid on;
28 L end
26 % Plot the results 29
27 figure; .) 38 hold off;
28 plot(r_values, largest_root, 'm-', ‘LineWidth', 2); 31 |
20 hold on;
38 plot{r_values(r_values »= 1}, (r_values(r_wvalues »>= 1) - 1) ./ r_values/(r_values »= 1), ‘k--', ‘LineWidth', 2);
31 xlabel{'r');
32 ylabel{'Largest Realistic Root (N®)");
33 legend('Newton''s Method', ‘Analytical Solution');
34 title('Largest Realistic Root using Newton''s Method and Analytical Solution');
35 grid on;
36 | end
37
38[] function [root, iter, xlist] = safe_newton(func, pfunc, xguess, tol)
39 % Safe version of Newton's method to handle zero derivatives and adjust| initial guesses
49 if nargin < 4
41 tol = le-6;
42 end - -
43 | newton.m | newton_population_growth.m fixedptm 3 | fixedpt test.m 3-‘-‘| + |
44 % Initialize variables 1% function [xfinal, niter, xlist] = fixedpt{gfunc, xguess, tol, maxiter)
1= % FIXEDPT: Fixed point iteration for x=gfunc(x).
45 ¥ = WEUESS; 3 %
46 iter = @; 4 % Sample usage:
47 max_iter = 18@; <) % [xfinal, niter, xlist] = fixedpt{gfunc, xguess, tol, maxiter)
48 xlist = x; 6 %
49 7 % Input: 3] .
y . : 8 % gfunc - fixed point function
sal] while iter < max_iter O * xguess - initial guess at the fixed point
51 fx = feval(func, x); 18 % tol - convergence tolerance (OPTIONAL, defaults to le-6)
52 fpx = fewal{pfunc, x); 11 1 maxiter - maximum number of iterations (OPTIONAL, defaults to 1880)
53 12 *
= . 13 % Output:
54 % Check for zero derivative am
o : 14 % xfinal - final estimate of the fixed point
if abs(fpx) < tol _ 15 * niter - number of iterations to convergence
56 X = x + rand(} * 9.1; % Ad; 16 | % xlist - 1list of iterates, an array of length *niter’
57 iter = iter + 1; 17
58 continue; 18 % First, do some error checking on parameters.
5o end 19 if nar:‘gln < 2] " . '
& 28 fprintf(1, °FIXEDPT: must be called with at least two arguments’');
21 error('Usage: [xfinal, niter, xlist] = fixedpt(gfunc, xguess, [tol], [maxiter])');
6l x _new = x - Tx /[fpx; 22 P
62 23 if nargin < 3, tol = le-6; end
63 if abs(x_new - x) < tol 24 if nargin < 4, maxiter = 102@; end
64 break; 25 . .
65 4 260 % fenchk(...) allows a string function to be sent as & parameter, and
) 27 % converts it to the correct type to allow evalustion by feval().
66 28 gfunc = fenchk(gfunc);
&7 X = X_new; 29 X = XgUEss;
&8 xlist = [xlist; x]; EL:] xlist = x;
69 iter = iter + 1; i; 5 o
niter = 8;
e - i
end 33 done = 8;
71 34 while ~done
72 root = x; 35 xnew = feval(gfunc, x);
73 L end 36 xlist = [x1list; xnew]; ¥ create a list of x-values
37 niter = niter + 1;
38 if abs(x - xnew) < tol || niter »>= maxiter % stopping tolerance for x or max iterations
39 done = 1;
48 end
41 X = Xnew;
42 - end
43 xfinal = xnew;
44 - end

